Problem 7

Use the preliminary test to decide whether the following series are divergent or require further testing. Careful: Do not say that a series is convergent; the preliminary test cannot decide this.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{3}+1}}
$$

Solution

Take the limit of the summand as $n \rightarrow \infty$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{\sqrt{n^{3}+1}} & =\left[\lim _{n \rightarrow \infty}(-1)^{n}\right]\left(\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{3}+1}}\right) \\
& =\left[\lim _{n \rightarrow \infty}(-1)^{n}\right]\left[\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{3}\left(1+\frac{1}{n^{3}}\right)}}\right] \\
& =\left[\lim _{n \rightarrow \infty}(-1)^{n}\right]\left(\lim _{n \rightarrow \infty} \frac{n}{n^{3 / 2} \sqrt{1+\frac{1}{n^{3}}}}\right) \\
& =\left[\lim _{n \rightarrow \infty}(-1)^{n}\right]\left(\lim _{n \rightarrow \infty} \frac{1}{n^{1 / 2} \sqrt{1+\frac{1}{n^{3}}}}\right) \\
& =\left[\lim _{n \rightarrow \infty}(-1)^{n}\right]\left(\lim _{n \rightarrow \infty} \frac{1}{n^{1 / 2}}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n^{3}}}}\right) \\
& =\left[\lim _{n \rightarrow \infty}(-1)^{n}\right](0)(1) \\
& =0
\end{aligned}
$$

Since it's zero, no conclusion can be drawn. Further testing is needed.

